orch:Solvers

From orch
Revision as of 14:21, 7 March 2016 by Jaouen (Talk | contribs) (Chemical kinetics)

Jump to: navigation, search

Chemical kinetics

This chapter reports the principles that drive the computation of combustion chemistry in most CFD softwares.

  • Arrhenius law

is the pre-exponential factor, is the temperature exponent and the activation energy


  • Three-body reactions

In the forward direction, three-body reactions involve two species A and B as reactants and yield a single product AB. In that case, the third body M is used to stabilize the excited product AB*. On the contrary, in the reverse direction, heat provides the energy necessary to break the link between A and B.

The third body M can be any inert molecule.


  • Falloff reactions

Under specific conditions, some reaction rate expressions are dependent on pressure and temperature. This is especially true for the rate associated to unimolecular/recombination fall-off reactions which increases with pressure. In such cases, if the chemical process takes place in a high or low pressure limit


  • Reaction rates

The global rate of a reaction j (evolution in concentration per unit of time) varies depending on the proportion of the rates associated to the forward and backward directions.


  • Production/Consumption source terms

Species source terms are deduced from

Solver to build reference trajectories

DRGEP solver for species reduction

  • Compute species direct inter-relations
  • Compute species relations through indirect paths
  • Compute relations between targets and

DRGEP solver for reactions reduction

QSS solver

  • Solve for thermodynamic

Get Gibbs Free Energy

Get Equilibrium constants